
1

InSAR Scientific Computing Environment	

Investigators: Paul A. Rosen1(PI), Eric Gurrola1, Walter Szeliga1,
Giangi Sacco1, Howard Zebker2	

Consulting Collaborators: Mark Simons3, Scott Hensley1, 	

David Sandwell4	

Students: Piyush Shanker2,3, Albert Chen2, and Cody Wortham2	

1 Jet Propulsion Laboratory/California Institute of Technology	

2Stanford University	

3California Institute of Technology	

4San Diego Institution of Oceanography	

AIST-08-0023	

ESTO Forum 2011	

Copyright © 2011 All Rights Reserved	

2

InSAR Scientific Computing Environment	

The InSAR Scientific Computing Environment (ISCE) includes:

•   Commitment to community needs and involvement
•  Legacy (ROI_PAC) and New InSAR processing software based on SRTM to UAVSAR
processors
•   More accurate
•   Better geolocation
•   Faster
•  A new computing environment that is easy to use, flexible, and extensible

•   Canned Applications with defaults for quick and easy processing and Framework of
Components from which the user can build his own Applications

•   object-oriented Python Component wrappers that manage user interface, workflow, and the
life cycle of processing components

•   Fortran/C radar domain expert code left mostly in tact: preserve experience and testing

•   Runtime polymorphism of components through plug-in architecture and factory pattern
instantiation

•   User configuration of Image/Meta data formats and I/O

3

InSARProc Workshops 2008 & 2011	

•   The goals of ISCE are a direct response to the priorities set by an international
community of radar processor developers and users as determined by two NASA
sponsored InSAR workshops, one convened in 2008 at Stanford University and
the other in 2011 at the Scripps Institution of Oceanography.

•   The goals of the 2008 workshop were to assess the strengths and weaknesses of
the existing InSAR processing packages at the time, define the capabilities of the
next-generation processors required by the user community, and set the
standards and structure for new InSAR processor development.

•   The goals of the 2011 workshop were to compare and validate the accuracy and
performance of the various non-commercial InSAR processing packages, both
legacy and new, and to generate feedback and suggestions for further
developments.

Sponsorship: InSARProc Workshops were endorsed by NASA's DESDynI Steering
Committee and sponsored jointly by NASA’s Earth Surface and Interior Program and by
the Stanford Center for Computational Earth & Environmental Science (CEES) and the
Scripps Institution of Oceanography.

4

InSARProc Workshop 2008 Recommendations	

The high-level guidelines and recommendations coming out of InSARProc2008
were prioritized in two groups:

Highest priority:
•  The next-generation software should be accurate in phase and location
•  The package should be extensible, modular, and efficient
•  The package should be well documented, supported, accessible to all users

Second priority:
•  The software should be portable, thus with a small and light footprint
•  The new codes should be open source in the sense that they should be
available to anyone for inspection, use, modification, and redistribution.
•  The code should be thoroughly tested, debugged, pass benchmarks, and
verified.
•  Results should be readily reproducible and repeatable.
•  The package should follow well-defined, standardized products with clear
coordinates.

5

InSARProc Workshop 2011	

InSARProc Workshop 2011 compared the accuracy and performance of the various
non-commercial InSAR processing packages. Four different InSAR packages were
compared for several challenging data sets: (1) ROI_PAC (JPL Open Channel legacy
code widely used by scientists); (2) ISCE; (3) the Stanford core processor
STD_PROC contained in ISCE (as a separate package without the framework); and
(4) GMT_SAR developed at Scripps.

•  ISCE did well in terms of accuracy, speed, and ease of use.
•  Some found it difficult to install. The use of Python and the gcc requires a self-
consistency to the development environment that many users do not understand.
One of the key actions for the ISCE team is to provide more complete descriptions of
what constitutes a self-consistent environment, and provide the tools and information
for a user to easily create one.
•  Recommendations for further comparisons were made, including incorporation of a
few commercial InSAR packages and simulated data to isolate differences in results
found between the different packages.

•  One of the top action items from the workshop was to make ISCE available for rapid
and wide distribution, indicating that the development is of interest to the community.

6

Interferometric Synthetic Aperture Radar	

Radar data from two passes over a scene at different times from a variety of satellites
(ERS, JERS, EnviSAT, ALOS, TerraSAR-X,…) are processed into images,

interferograms, and geocoded topography and Earth displacement maps

Map of Earth Displacement between t1 and t2

t1

t2

7

ROI_PAC Legacy Processor: InSAR Processing Flow	

8

STD_PROC: Improved/Enhanced Processor for ISCE	

•   STD_PROC is a new InSAR processing package being developed at
Stanford under the current AIST.

•  STD_PROC overlaps much of the functionality of ROI_PAC but it will also
extend the functionality to include time-series analysis methods for analyzing
evolution of displacement fields over time from multiple passes over a scene
and to include persistent scatterer methods to allow interferometric
processing in the presence of low-correlation.

•   STD_PROC borrows from and builds upon the improved processing
algorithms developed for SRTM and UAVSAR InSAR processors.

•   STD_PROC applies a motion compensation algorithm to produce images in
a common geographical coordinate system from the start to facilitate time-
series analysis of interferograms formed from multiple pairings of radar
images.

•   STD_PROC is more efficient and much faster through the use of improved
algorithms and the use of OpenMP

9

STD_PROC Motion Compensation Algorithm	

•   STD_PROC, at the core of ISCE, preserves accuracy of its data products by taking
advantage of the improved accuracy of orbit determination now available and
implementing all of the code in a uniform geometric framework (Zebker et al., 2010).
•  This approach is based on well-known motion compensation techniques and
facilitates analysis of a time series of many observations of a particular location by
use of a motion-compensated geodetic coordinate system rather than the traditional
range/Doppler coordinate system specific to a given observation (used by for
example ROI_PAC).
•  The equations implemented in the processor are simplified by use of a local
spherical earth approximation and a corresponding circular approximation of the
platform orbit. The spherical coordinate system, referred to as SCH (in which S is the
local along track direction, C is the cross track direction, and H is the height above
the approximating sphere.
•  In this approach, the direction from the satellite to a point on the Earth is determined
through the estimated Doppler centroid. The position of the satellite is compensated
along this direction back to the reference track as a range correction. A
corresponding phase correction is also applied. The equations encoded in
STD_PROC and hence ISCE are developed in detail in Zebker et al. (2010) and
Gurrola et al (2010).

10

ISCE Motion Compensation Geometry	

!
The motion compensation geometry, showing the correspondence of an image
pixel at P, actual satellite position (S0 ,C0, H0) and the assigned reference
position on the circular orbit (S,0,H).

11

Key Drivers of the ISCE Architecture	

Key drivers of the ISCE architecture:

1. Preserve the vast expertise and testing currently encoded in Legacy
Software including both ROI_PAC and STD_PROC.

2. Make that Legacy Software more lean in terms of the number of auxiliary
tasks it needs to do (such as self configuration and I/O configuration).

3. Build modern object oriented structures around and behind the legacy code
to manage that code and push rather than pull user configuration onto that
code before execution.

4. Implement common functions and services such as I/O through APIs to
allow their implementations to change and to allow for user configuration and
selection of those functions at run-time.

5. Build in polymorphism mechanisms to allow user selections to alter the
implementations of major processing steps and common functions. Also
allows just-in-time insertion of alternative functions and major components

12

ISCE Component Architecture	

Componentization of a legacy
program:

(a)   Embed the legacy program at the
core of an object-oriented
component written in Python.

(b) Provide complete management of
the core component through its
life-cycle from initialization
through proper finalization.
Provide previously unavailable
introspection capability

(c) Provide input and output ports
with well-defined interfaces

(d) Provide well-defined interface for
flow of control parameters from
the user through controlling
applications to the component.

(e) Provide Framework Components
and Properties for common
object definitions and common
tasks.

13

ISCE Architecture	

!

14

Conclusion	

•  The ISCE AIST project has met all of its goals to date and is currently in its
planned final year of testing and documentation.

•  A beta version of ISCE has been licensed to a few users for testing and
feedback. We are currently working to find a proper licensing procedure for wider
release of the software to the user community.

•  ISCE is now mature enough that other customers are beginning to adopt it for
future development.

   ISCE is being baselined as the core engine for a new internal development task being
formulated at JPL and Caltech for rapid response to earthquakes and other natural
disasters. The JPL/Caltech team plans to write substantial proposals to agencies
interested in scientifically based rapid response capabilities

   ISCE is generating considerable interest in the traditional ROI_PAC community.
Community ROI_PAC developers are now investing their time in ISCE rather than
updating ROI_PAC

   Keck Institute of Space Science Earth Change Project at Caltech baselining ISCE
   Several new ROSES proposals (Applications for Geodetic Imaging) are baselining

ISCE

15

Acknowledgements	

•  We thank Albert Chen and Cody Wortham, both PhD candidates at Stanford
University, and Piyush Shanker, PostDoc at Caltech, formerly PhD candidate
student at Stanford, for their contributions to the Stanford legacy code at the core
of ISCE.

•  The authors would like to thank the Earth Science Technology Office at NASA for
support. This work was performed at the Jet Propulsion Laboratory, California
Institute of Technology under a contract with NASA, and at Stanford University
under a contract with JPL.

16

References	

•  Gurrola, E., P. Rosen, G. Sacco, W. Szeliga, H. Zebker, M. Simons, D. Sandwell,
P. Shanker, C. Wortham, and A. Chen (2010). “InSAR Scientific Computing
Environment”. 2010 American Geophysical Union Meeting.

•   Rosen, P. et al. (2009). “InSAR Scientific Computing Environment”. 2009
American Geophysical Union Meeting. Also presented a summary of InSAR SCE
and progress at the WinSAR meeting at Fall AGU 2009

•  Zebker, H., S. Hensley, P. Shanker, C. Wortham (2010). Geodetically Accurate
InSAR Data Processor. IEEE Trans. On Geoscience and Remote Sensing, 48(12).

•  Rosen, P. A., S. Hensley, and G. Peltzer (2004), Updated Repeat Orbit
Interferometry Package released, Eos Trans. AGU, 85(5).

